Density forecasting with Bayesian Vector Autoregressive models under macroeconomic data uncertainty
نویسندگان
چکیده
Macroeconomic data are subject to revisions as later vintages released. Yet, the usual way of generating real-time density forecasts from BVAR models makes no allowance for this form uncertainty. We evaluate two methods that consider uncertainty when forecasting with with/without stochastic volatility. First, model is estimated on vintages. Second, a included, so on, and conditioned estimates revised values. show both these improve accuracy US UK output growth inflation. also investigate how characteristics underlying processes affect performance, provide guidance may benefit professional forecasters.
منابع مشابه
Forecasting with time-varying vector autoregressive models
The purpose of this paper is to propose a time-varying vector autoregressive model (TV-VAR) for forecasting multivariate time series. The model is casted into a state-space form that allows flexible description and analysis. The volatility covariance matrix of the time series is modelled via inverted Wishart and singular multivariate beta distributions allowing a fully conjugate Bayesian infere...
متن کاملModel Uncertainty in Panel Vector Autoregressive Models
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, t...
متن کاملBayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models
Advanced Bayesian methods are employed in estimating dynamic stochastic general equilibrium (DSGE) models. Although policymakers and practitioners are particularly interested in DSGE models, these are typically too stylized to be taken directly to the data and often yield weak prediction results. Hybrid models can deal with some of the DSGE model misspeci cations. Major advances in Bayesian est...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملBayesian Estimates for Vector - Autoregressive Models
This paper examines frequentist risks of Bayesian estimates of VAR regression coefficient and error covariance matrices under competing loss functions, under a variety of non-informative priors, and in the normal and Student-t models. Simulation results show that for the regression coefficient matrix an asymmetric LINEX estimator does better overall than the posterior mean. For the error covari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Econometrics
سال: 2022
ISSN: ['1099-1255', '0883-7252']
DOI: https://doi.org/10.1002/jae.2944